Dynamic Pickup and Delivery with Transfers

P. Bouros¹, D. Sacharidis², T. Dalamagas², T. Sellis^{1,2} ¹NTUA, ²IMIS – RC "Athena"

Outline

Introduction

Related work

- Pickup and delivery problems
- Shortest path problems
- Solving dynamic Pickup and Delivery with Transfers
 - Actions
 - Dynamic plan graph
 - The SP algorithm
- Experimental evaluation
- Conclusions and Future work

Motivation example

- A courier company offering pickup and delivery services
- Static plan
 - Set of requests
 - Transfers between vehicles
 - Collection of vehicles routes
- Pickup and Delivery with Transfers
 - Create static plan
- Ad-hoc requests
 - Pickup package from n_s, deliver it at n_e
- dynamic Pickup and Delivery with Transfers (dPDPT)
 - Modify static plan to satisfy new request

Motivation example

- A courier company offering pickup and delivery services
- Static plan
 - Set of requests
 - Transfers between vehicles
 - Collection of vehicles routes
- Pickup and Delivery with Transfers
 - Create static plan
- Ad-hoc requests
 - Pickup package from n_s, deliver it at n_e
- dynamic Pickup and Delivery with Transfers (dPDPT)
 - Modify static plan to satisfy new request

Motivation example

- A courier company offering pickup and delivery services
- Static plan
 - Set of requests
 - Transfers between vehicles
 - Collection of vehicles routes
- Pickup and Delivery with Transfers
 - Create static plan
- Ad-hoc requests
 - Pickup package from n_s, deliver it at n_e
- dynamic Pickup and Delivery with Transfers (dPDPT)
 - Modify static plan to satisfy new request

Contributions

- First work targeting dPDPT
 - Works for dynamic Pickup and Delivery can be adapted to work with transfers
- dPDPT as a graph problem
 - Works for dynamic Pickup and Delivery involve two-phase local search method
- Cost metrics
 - Company's viewpoint, extra traveling or waiting time
 - Customer's viewpoint, delivery time
- Solution
 - Dynamic two-criterion shortest path

Related work

Pickup and delivery problems

- Precedence and pairing constraints
- Variations
 - Time windows
 - Capacity constraint
 - Transfers
- Static
 - Generalization of TSP
 - Exact solutions
 - □ Column generation, branch-and-cut
 - Approximation
 Local search
- Dynamic

• Two phases, insertion heuristic and local search

Related work

Pickup and delivery problems

- Precedence and pairing constraints
- Variations
 - Time windows
 - Capacity constraint
 - Transfers
- Static
 - Generalization of TSP
 - Exact solutions
 - □ Column generation, branch-and-cut
 - Approximation
 Local search
- Dynamic

• Two phases, insertion heuristic and local search

Related work (cont'd)

- Shortest path problems
 - Classic

- Dijkstra, Bellman-Ford
- ALT: bidirectional A*, graph embedding
- Materialization and labeling techniques
- Multi-criteria SP
 - Reduction to single-criterion: user-defined preference function
 - Interaction with decision maker
 - Label-setting or correcting algorithms: a label for each path reaching a node
- Time-dependent SP
 - Cost from n_i to n_i depends on departure time from n_i
 - Dijkstra: consider earliest possible arrival time
 - FIFO, non-overtaking property

Related work (cont'd)

- Shortest path problems
 - Classic

- Dijkstra, Bellman-Ford
- ALT: bidirectional A*, graph embedding
- Materialization and labeling techniques
- Multi-criteria SP
 - Reduction to single-criterion: user-defined preference function
 - Interaction with decision maker
 - Label-setting or correcting algorithms: a label for each path reaching a node
- Time-dependent SP
 - Cost from n_i to n_i depends on departure time from n_i
 - Dijkstra: consider earliest possible arrival time
 - FIFO, non-overtaking property

Solving dPDPT

- Modify static plan
 - A modifications, called actions, allowed with/without detours
 - Pickup, delivery
 - Transport
 - Transfer
- A sequence of actions, path p
 - Operational cost Op
 - Customer cost Cp
- Dynamic plan graph
 - All possible actions
- Solution to a dPDPT request
 - Path p with that primarily minimizes Op, secondarily Cp

Actions

Actions

Dynamic plan graph

The SP algorithm

- Shortest path on dynamic plan graph
- **BUT**:
 - Dynamic plan graph violates subpath optimality
 - Answer path (V_s,...,V_i,...,V_e) to dPDPT(n_s,n_e) does not contain answer path (V_s,...,V_i) to dPDPT(n_s,n_i)
 - Cannot adopt Dijkstra or Bellman-Ford
- The SP algorithm
 - Label-setting for two-criteria, Op and Cp
 - A label $\langle V_i^a, p, Op, Cp \rangle$ for each path to V_i^a
 - At each iteration select label with lowest combined cost
 - Compute candidate answer upper bound
 - When a delivery edge is found
 - Prune search space
 - Terminate search

- INITIALIZATION
- CONSIDER pickup E_{s1}^a and E_{s3}^b
- ► $Q = \{ < V_1^a, (V_s, V_1^a), 6, 16 >, < < V_3^b, (V_s, V_3^b), 6, 36 > \}$
- ▶ P_{cand} = null

Detour cost T = 6

•
$$Q = \{ < V_2^a, (V_s, V_1^a, V_2^a), \\ 6,26>, < V_3^b, (V_s, V_3^b), 6,36> \}$$

$$\blacktriangleright$$
 P_{cand} = null

- ▶ POP < V₂^a, (V_s, V₁^a, V₂^a),
- CONSIDER transfer E₂₅^{ac}
- $Arr_5^c = 10 < 26 < Dep_5^c =$ 40
- ► Q = {<V₃^b,(V₅,V₃^b),6,36>, $< V_5^{c}, (V_s, V_1^{a}, V_2^{a}, V_5^{c}),$ 18,36>}
- $\blacktriangleright P_{cand} = null$

Detour cost T = 6

- $\xrightarrow{C} V_{6}^{C} \longrightarrow V_{7}^{C} \longrightarrow V_{e}$ $\begin{array}{c} \mathsf{POP} < \mathsf{V}_{3}^{b}, (\mathsf{V}_{s}, \mathsf{V}_{3}^{b}), 6, 36 > \\ \mathsf{and} < \mathsf{V}_{4}^{b}, (\mathsf{V}_{s}, \mathsf{V}_{3}^{b}, \mathsf{V}_{4}^{b}), \\ \mathsf{6}, 46 > \\ \end{array}$
 - CONSIDER transport E_{34}^{b} and transfer E_{46}^{bc}
 - $46 > Dep_6^c = 40$
 - ► Q = {<V₅^c,(V_s,V₁^a,V₂^a,V₅^c), 18,36>, <V₆^c, (V_s,V₃^b,V₄^b,V₆^c),24,52>}
 - ► P_{cand} = null

Detour cost T = 6

- ► POP $< V_5^c, (V_s, V_1^a, V_2^a, V_5^c),$
- CONSIDER transport E₅₆^c
- $Q = \{ < V_6^c,$ (V_c,V₁^a,V₂^a,V₅^c,V₆^c),18,46>, $< V_{6}^{c}, (V_{5}, V_{3}^{b}, V_{4}^{b}, V_{6}^{c}),$ 24,52>}

$$\blacktriangleright$$
 P_{cand} = null

- CONSIDER transport E_{67}^{c}
- $Q = \{< V_7^c,$ $(V_{s}, V_{1}^{a}, V_{2}^{a}, V_{5}^{c}, V_{6}^{c}, V_{7}^{c}), 18,$ 56>, $<V_6^{c}, (V_5, V_3^{b}, V_4^{b}, V_6^{c}),$ 24,52>}

$$\blacktriangleright$$
 P_{cand} = null

- 18.56>
- CONSIDER delivery E_{7e}^c
- FOUND p_{cand}
- ► Q = {<V₆^c,(V_c,V₃^b,V₄^b,V₆^c), 24,52>}
- $P_{cand} =$ $(V_{s}, V_{1}^{a}, V_{2}^{a}, V_{5}^{c}, V_{6}^{c}, V_{7}^{c}, V_{e})$
- Op_{cand} = 24
- \blacktriangleright Cp_{cand} = 59

- Op_{cand} = 24
- **STOP**

Experimental analysis

- Rival: two-phase method, HT
 - Cheapest insertion for pickup and delivery location, for every new request
 - After k requests perform tabu search

Datasets

- Road networks, OL with 6105 locations, ATH with 22601 locations
- Static plan with HT method
 - Vary |Reqs| = 200, 500, 1000, 2000
 - Vary |R| = 100, 250, **500**, 750, 1000
- Stored on disk
- Experiments
 - 500 dPDPT requests
 - HTI, HT3, HT5

Measure

- Total operational cost increase
- Total execution time
- I0% cache

Varying |Reqs|

OL road network

SSTD August 24, 2011

Varying |R|

OL road network

SSTD August 24, 2011

To sum up

Conclusions

- First work on dPDPT
- Formulation as graph problem
- Solution as dynamic two-criterion shortest path
- Faster than a two-phase local search-based method, solutions of marginally lower quality

Future work

- Subpath optimality
- Exploit reachability information within routes
- Additional constraints, e.g., vehicle capacity

Questions? operational cost vnamic otransfer two-criterion detour